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1 Implementation

In order to implement the uniform channel for an input with length n with
at most l errors a possible strategy is to sample the number of errors k with
probability

P (k) =

(
n
k

)∑l
i=0

(
n
i

)
and after that the k bits to be flipped need to be sampled without replacement
between the n bits of the input to the channel. From figure 1(the plots were
obtained by running the channel 106 times) it is possible to see that the rep-
resentations obtained starting from a fixed message are uniformly distributed
over the reachable configurations. It is important to know that in all 3 cases the
x labels represent the integer value corresponding to the binary array, for the
joint probability y and z were concatenated into a single vector. Considering
the plot in the middle that shows Pz|x(b|x = 1001000) it is possible to see that
over all the reachable words, i.e those with distance smaller or equal than 3 from
1001000, the probability is uniform while for all the others it is always zero.

Figure 1: probability distribution of y, z, and joint distribution between y and
z
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Most of the implemented utility functions use numpy binary arrays in order
to solve the particular task they are designed for, the only exception is the
encoder where the binary representation of integers is used instead.

Task 2 and 3 were implemented as suggested in the instructions pdf, since
no particular design choices were needed in order to complete them. Tests
were run in order to make sure that perfect decodability is achieved with the
implementation, meaning that it should be correct.
In task 4 since the message distribution is not specified, it was assumed to be
uniform. Now it is easy to find an estimate of Pz|u(c|d) by computing multiple
times the output z with a fixed u. By repeating this procedure for all possible u
(only 8 in total since u has only 3 bits) it is possible to compute the conditional
distribution wrt all messages u. From this we can now compute Pu,z(d, c) =
Pz|u(c|d)Pu(d) and the marginal probability for z as

Pz(c) =
∑
d∈M

Pu,z(d, c)

At this point the mutual information can also be computed with the formula
written in the instructions pdf. A plot of Pz|u(c|d) can be seen in figure 2, the
labels in the u and z axis are the integer representation of the binary arrays u
and z. As expected the conditional probability is uniform over all possible values
of z. The plot was obtained by running the simulation 105 times. With the data
shown in the plot the mutual information value obtained was 0.0007475 that is
very small as expected, since theoretically z and u should be independent. To
support this hypothesis is also the fact that as we increase the number of trials
by a factor of 10 also the mutual information estimation decreases accordingly,
hinting the fact that as the number of trials increases it should tend towards 0.

The BSC implementation is very straight forward since it just consists in
flipping every bit with probability ε as if each single error was a Bernoulli random
variable.
The first two points of task 6 are a repetition of what was done before but with
the binary symmetric channel instead of the uniform one. The error rate over
Bob was computed for multiple values of epsilon,

ε ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999}.

The resulting plot can be seen in figure 3. Since the error rate is not equal
to 0 unless ε = 0 then it is possible to see that the system does not provide
perfect decodability anymore. For task 6.3 It is possible to see that the mutual
information between u and z, i.e the information shared between the two RV,
is actually the measure of secrecy that we are looking for. In case of perfect
secrecy, as for the uniform channel, since u and z are independent, the mutual
information is 0; the less independent the two of them are, the higher the mutual
information will be. In particular, if z is a deterministic function of u, then the
mutual information is H(u) = 3. It is possible to see the mutual information
between u and z as a function of δ (same range of values as ε) in figure 4, its
value is 0 only in case δ = 0.5 so in general perfect secrecy is lost.
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Figure 2: Plot of the conditional probability P (z|u)

Finally, for task 6.4, let M be the implemented mechanism and let M∗ be its
ideal counterpart. It is known that

d(M,M∗) ≤ max
a∈M

P (û 6= u|u = a) +
1

2

√
I(u; z),

where û is the message reconstructed by Bob and z is the encoded message
received by Eve.
I(u; z) was computed in the previous task, maxa∈M P (û 6= u|u = a) = P (û 6=
u|u = a) for each a ∈ M since it doesn’t matter what the initial message is,
in this system the probability of not being able to decode z is always the same
independently on u. So we can compute d(M,M∗) for different values of ε and
δ. The result can be seen in figure 5, this plot represents the upper bound to
d(M,M∗) as a function of ε, δ. It is possible to see that as expected we have
the minimum where ε = 0, δ = 0.5 and maximum where ε = 0.5, δ = 0.

2 Questions

2.1 Question 1

The scheme achieves perfect secrecy, since u and z are independent, so the
number of secret bits per word sent is actually 3, i.e the entropy of the message
distribution. The remaining 4 bits are redundancy used for error correction and
to achieve perfect secrecy. So, since a word is 7 bits long, it means that for each
binary digit 3

7 secret bits are obtained.
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Figure 3: Error rate at Bob’s side as a function of ε, (105 realizations of the
system for each point)

Figure 4: Mutual information between u and z as a function of δ(104 realizations
of the system for each point)
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Figure 5: Plot of the upper bound of d(M,M∗) as a function of ε, δ

2.2 Question 2

If in a single use of the channel 7 binary digits are sent and hamming code
is used, then the answer is no. As a matter of fact, if a 4 bits long message
u′ was encoded with the hamming code, then the only possibility would be
Tx|u = hamming(u′). With this encoder and the corresponding decoder the
perfect decodability would still be ensured since hamming codes can correct up
to 1 error, but perfect secrecy wouldn’t.
As a matter of fact in the original scheme Tx|u = hamming([0, u]), hamming([1, !u]),
where !u is the word where all bits are flipped wrt u, and it is possible to see
that

dH(hamming([0, u]), hamming([1, !u]) = 7.

Because of that (with fixed u) z can take with uniform probability all the possible
configurations of 7 bits. On the other hand, with Tx|u = hamming(u′) if Eve
gets z then since the maximum number of errors is 3 it could rule out all the code-
words x with hamming distance greater than 3 from z, leading to z not being
independent from u anymore and thus violating the condition for perfect secrecy.
This can also be seen from the formula that tells if both secrecy and reliability
are achieved, as a matter of fact with 4 bits |M| = 16, |X ′| = 16, Nx|u = 1, |Y| =
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|Z|, Nz|x = 64, Ny|x = 8 so the bound is violated since

|M| = 16 ≤
Nz|x

Ny|x
= 8

because as previously said perfect secrecy is not achieved.

2.3 Question 3

Yes It is possible to send only two secret bits per channel use, in this case the
encoder should take the 2 bit message u, add the bits 00 at the beginning and
find the associated hamming word xtemp. Also in this case Tx = {xtemp, !xtemp}.
Since also in this case z will be uniformly distributed over all the sequences
of 7 bits perfect secrecy is retained, plus due to the fact that Bob’s channel
makes at most one error it means that it can be always corrected and thus
also perfect reliability is achieved. This can also be seen from the formula that
tells if both secrecy and reliability are achieved, as a matter of fact with 2 bits
|M| = 4, |X ′| = 8, Nx|u = 2, |Y| = |Z|, Nz|x = 64, Ny|x = 8. Here all the bounds
are respected and as a matter of fact both perfect secrecy and decodability are
obtained. So with this encoder and the corresponding decoder it is possible to
send two secret bits per channel use. Using the same reasoning it is also possible
to send only one secret bit if we add 3 null bits at the beginning. In general
though in order not to waste bandwidth it is probably just better to send 3
secret bits.

2.4 Question 4

It is reasonable to believe that Eve’s error rate would be 7
8 i.e. the random

guessing error, given that the distribution for u is uniform, since z and u have
been shown to be independent. Probably mutual information is used to evaluate
the system because it tells how much information about u the optimal algorithm
could obtain from z. While the error rate depends on the implemented strategy,
so if this is not optimal the error rate could be very high even if, in principle,
Eve could have a much lower one. So mutual information is used because it
doesn’t depend on the decoder implementation while the random guessing error
does.
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