
Third Laboratory - Team Green

Caliguri Matteo, Cestaro Riccardo, Vaishnav Harshul,
Mari Daniele, Porro Thomas

December 2020

1 Task 1

For task one, the implementation was pretty straight forward, numpy was used
to represent arrays of binary numbers. The complexity of the protocol is poly-
nomial in lk, lc since the number conversion is polynomial in lc, lk and it is done
a constant number of times, the same goes for integer sum and multiplication.
The complexity of the protocol w.r.t. lk for different values of lc can be seen
in figure 1, this was done by measuring the time before and after the execution
of the protocol and subtracting the two. This was repeated multiple times and
the values were averaged in order to obtain a more reliable estimation of the
time needed for the execution. Still it is possible to see that the measurements
were noisy. In general it is possible to see that as we increase lk and lc the
time increases linearly or slightly super-linearly showing how the complexity
requirements were met.

2 Task 2

In this task, suppose that the attacker, Eve, wants to fool Bob on the nth round,
then by assumption she also knows n−25, cn−25 and rn−25 because she observed
these values during a protocol exchange between Alice and Bob. From cn−25 Eve
can compute sc, n−25 by converting it to decimal and summing all its digits, this
means that she can also find st,n−25 by computing sn−25 = decimal(rn−25) and
then st, n−25 = sn−25

sc, n−25
. It is possible to see that tn = k+n = k+n−25+25 =

tn−25+25. By calling di(t) the digit di = t//10i mod 10 where // is the integer
division, it is possible to see that if d0(tn−25) < 5 and d1(tn−25) < 8 then
st = st−25 + 7 where 7=2+5 is the sum of the digits of 25. It is easy to see that
P (d < 5) = 0.5 and P (d < 8) = 0.8 then P (d0(tn−25) < 5, d1(tn−25) < 8) = 0.4
since the two probabilities are independent.

One would be tempted to say that adding 7 to st−25 actually yields the
highest success probability, but actually this is not true. Considering the case
d0(tn−25) ≥ 5 and d1(tn−25) < 8 it is possible to see that almost always st =
st−25 − 2 so also subtracting 2 has success probability that is similar to that of

1

Figure 1: Computational complexity of the protocol

Figure 2: Success probability(left) and complexity(right) for task 2

adding 7. By running some simulations it is clear that st = st−25 − 2 also in
some cases when d0(tn−25) ≥ 5 and d1(tn−25) ≥ 8 making it a better choice wrt
summing 7. As a matter of fact this approach has a success probability that is
close to 44% as will be seen later in plot 2.

So during the attack Eve computes ŝt,n = st,n−25−2, then r̂ = binary(ŝt,nsc,n)
and submits it to bob hoping that he will accept him.

From figure 2 it is possible to see that the success probability is approxi-
mately 0.44 and that it does not depend on lk, lc, this measure was obtained by
running multiple times the attack and by finding out the fraction of successful
cases. Since the attack doesn’t actually do anything more than the normal pro-
tocol except from a fraction and a sum it is possible to see that the complexity
trend is very similar to the one obtained with the standard protocol.

2

Figure 3: Success probability(left) and computational complexity(right) for task
3

3 Task 3

The weakness exploited to perform an attack on the protocol without seeing
any of its previous iterations is the fact that given t uniformly distributed,
St isn’t. Because of this some values of St are more likely to occur. Fur-
thermore the sum of the digits operation wastes a lot of the information car-
ried by the bits of the key k, so even with key very big the success prob-
ability is pretty high. In order to compute this distribution it is possible
to employ a dynamic programming approach. Let’s call SD(d) the function
that computes the sum of the digits of number d and Dist(d, c) the func-
tion that returns the number of values i s.t. SD(i) = c, i < d. Now it
is easy to see that Dist(1, 0) = 1, Dist(1, i) = 0 i > 0. At this point it
is possible to see that Dist(2, j) = Dist(1, j) + Dist(1, j − 1), Dist(3, j) =
Dist(2, j) + Dist(1, j − 2), . . . Dist(10, j) = Dist(9, j) + Dist(1, j − 9). And
then again Dist(20, j) = Dist(10, j)+Dist(10, j−1), Dist(30, j) = Dist(20, j)+
Dist(10, j − 2), . . . , Dist(100, j) = Dist(90, j) + Dist(10, j − 9). This can be
easily generalized also for bigger multiples of power of 10. Using this procedure
it is possible to see that the computational complexity needed to compute the
function Dist(d, c) with d big is notably reduced since it is logarithmic in d and
not linear. Given the previous property it is possible to find an algorithm to
compute Dist(d, c) for a general d, see the pseudo code 1.

Now since t can take values only in [n, 2lk + n] it is possible to compute the
actual probability distribution of the sum of the digits of the possible values of

t as Dist(2lk+n)−Dist(n)

sum(Dist(2lk+n)−Dist(n))
and the optimal t value can be computed as the

argmax of this array. The complexity of the algorithm is actually linear in lk, lc.
During the attack the length of the key lk is known and the attacker can pose
as Alice during the first two steps in order to get c, n. The transmitted values
of c and n can be used to compute respectively sc, by using the protocol, and
the guess ŝt through the algorithm described above. A problem encountered
with this approach in the homework was that due to numpy integer being saved

3

Algorithm 1 Distri Algorithm

1: procedure Dist(d)
2: notableDists← []
3: distribution[i]← 1 if i = 0, 0 otherwise
4:

5: // this returns and array containing the digits of d
6: digits← getDigitArray(d)
7:

8: // exponent of the highest power of 10 smaller or equal than d
9: exponent← length(digits)− 1

10:

11: for all i← 0, . . . , exponent + 1 do
12: notableDists[i]← distribution
13: if i ≤ exponent then
14: limit← 9
15: else limit← digits[0]
16: for all j← 1, . . . , limit do
17: distribution[c] = distribution[c] + notableDists[i][c - j]

18:

19: // At this point distribution[c] contains Dist(digits[0]10exp, c)
20: // Now it is important to finish computing Dist(d, c),
21: // this is done by repeating the previous operation but
22: //in this case from the bigger digit to the smaller one
23: cumulativeSum← 0
24: for all i← 0, . . . , exponent - 1 do
25: cumulativeSum← cumulativeSum + digits[i]
26: for all j← 0, . . . , digits[i + 1] do
27: distribution[c]← distribution[c]+notableDists[exponent−i−1][c−

cumulativeSum− j]
return notableDists

4

with a fixed number of bits, with lk > 68 some of them were overflowing making
the result distribution useless. This problem could be solved easily by using
other data types but in this case a different approach was employed for lk >
68. In particular usually the distribution of the sums of the digits is almost
symmetric, with the maximum in the center. So a simpler way to get a good
estimate of the best value st is to compute the biggest possible sum of the
digits st,max = d9log10(n + 2lk)e and choose ŝt =

st,max

2 . This approach is
actually faster than the previous one, but it yields a less accurate estimate
of the best value for st, plus by computing the whole distribution the attacker
could correctly compute its success probability. Because of this both approaches
have their pros and cons and one can be chosen over the other depending on
the necessities and capabilities of the attacker. Once sc, ŝt are computed their
product ŝ is transformed to its binary representation and submit to Bob in order
to find out if the correct value of r was guessed.

The plots in figure 3 were generated using two different strategies for different
values of lk in particular:

• lk ≤ 68: here the algorithm 1 was used

• lk > 68: here the best value was computed using the approximation de-
scribed above.

The success probability looks very smooth, showing that the two approaches
yield similar results, and it looks independent on lc but actually decreases as
lk increases. For the computational complexity it is possible to notice a big
difference between the two parts of the plot since obviously it is much faster to
compute the approximation. Still both the approaches are linear in lk, lc since
the trend displayed in the plot is.

5

