Laboratory session 1
 Implementation and linear cryptanalysis of a Feistel cipher

Nicola Laurenti, Francesco Ardizzon
October 30, 2020

©ccreative ${ }_{\text {commons }}$
 (i)
 (0)

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Laboratory session 1- Contents

Review of Feistel ciphers

Your tasks in this laboratory session

Appendices

Feistel ciphers

A Feistel cipher is a binary block cipher with $\mathcal{M}=\mathcal{X}=\mathbb{B}^{2 \ell}$ that is based on the following n-round (S, T, L) iterated structure $E_{k}=L S_{k_{n}} \cdots T L S_{k_{2}} T L S_{k_{1}}$

Encryption

1. First the plaintext u is split into two ℓ-bit blocks y_{1} and z_{1}
2. Then at each round i the following transformation are applied

$$
\begin{aligned}
& \text { substitution } S: \mathcal{K}^{\prime} \times \mathbb{B}^{2 \ell} \mapsto \mathbb{B}^{3 \ell}, \quad S_{k_{i}}\left(y_{i}, z_{i}\right)=\left[y_{i}, w_{i}, z_{i}\right], \quad w_{i}=f\left(k_{i}, y_{i}\right) \\
& \text { linear tf } L: \mathbb{B}^{3 \ell} \mapsto \mathbb{B}^{2 \ell}, \quad L\left(y_{i}, w_{i}, z_{i}\right)=\left[y_{i}, v_{i}\right], \text { with } v_{i}=w_{i}+z_{i} \\
& \text { transposition } T: \mathbb{B}^{2 \ell} \mapsto \mathbb{B}^{2 \ell}, \quad T\left(y_{i}, v_{i}\right)=\left[v_{i}, y_{i}\right]=\left[y_{i+1}, z_{i+1}\right], \quad i \neq n
\end{aligned}
$$

3. Last, y_{n} and v_{n} are concatenated to make the ciphertext x

Feistel ciphers

A Feistel cipher can be decrypted by using the same operations and in the same order, except for the inversion of the key sequence, i.e.: $D_{k}=L S_{k_{1}} T L S_{k_{2}} \cdots T L S_{k_{n}}$

Decryption

1. Split x into y_{n} and v_{n}
2. Then at each round i running backwards (from n to 1)

$$
\begin{aligned}
& S_{k_{i}}\left(y_{i}, v_{i}\right)=\left[y_{i}, w_{i}, v_{i}\right], \quad \text { with } w_{i}=f\left(k_{i}, y_{i}\right) \\
& L\left(y_{i}, w_{i}, v_{i}\right)=\left[y_{i}, z_{i}\right], \quad \text { with } z_{i}=w_{i}+v_{i} \\
& T\left(y_{i}, z_{i}\right)=\left[z_{i}, y_{i}\right]=\left[y_{i-1}, v_{i-1}\right], \quad i \neq 1
\end{aligned}
$$

3. Last, y_{1} and z_{1} are concatenated to make the plaintext u

Example: Data Encryption Standard (DES)

- A Feistel cipher with binary keys and lengths $\ell_{k}=56, \ell_{u}=\ell_{x}=64, \ell=32$, using $n=16$ rounds
- Designed by IBM in 1977 for the US NSA
- Efficient hardware implementation

Security features

- Moderately secure against brute force (key too short even then)
- Careful design of the round function $f(\cdot, \cdot)$ avoiding linear and differential cryptanalysis (only discovered in the 90's)

Implement a simple Feistel encryptor

Task 1

Using a programming language of your choice, implement the encryptor for a Feistel cipher with the following parameters:

$$
\text { message length } \ell_{u}=\ell_{x}=2 \ell=32 \quad, \quad \text { key length } \ell_{k}=32 \quad, \quad n r . \text { of rounds } n=17
$$

round function the j-th bit of the output block w_{i} in the i-th round, denoted $w_{i}(j)$ is
$f: \quad w_{i}(j)= \begin{cases}y_{i}(j) \oplus k_{i}(4 j-3) & , \quad 1 \leq j \leq \ell / 2 \\ y_{i}(j) \oplus k_{i}(4 j-2 \ell) & , \quad \ell / 2<j \leq \ell\end{cases}$
subkey generation the j-th bit of the subkey k_{i} for the i-th round, denoted $k_{i}(j)$ is

$$
g_{i}: \quad k_{i}(j)=k\left(\left((5 i+j-1) \bmod \ell_{k}\right)+1\right) \quad, \quad i=1, \ldots, n
$$

Check that your implementation is correct by verifying that the encryption of $u=0 \times 80000000=[1,0, \ldots, 0]$ with the key $k=0 \times 80000000=[1,0, \ldots, 0]$ is $x=0 \times$ D80B1A63 $=[11011000000010110001101001100011$]

Task 2

Implement the decryptor for this Feistel cipher
Check that your implementation is correct by verifying that by concatenating encryption and decryption with the same key k you retrieve the original plaintext u. Experiment with different (u, k) pairs

Identify the cipher vulnerability

Observe that

- the round function $f(\cdot, \cdot)$ is linear in both the message block and the subkey
- the subkey generation function $g_{i}(\cdot)$ is linear in the key
and conclude that the cipher is linear

Task 3

Identify the overall linear relationship for this Feistel cipher, that is find the binary matrices $A \in \mathbb{B}^{\ell_{x} \times \ell_{k}}$ and $B \in \mathbb{B}^{\ell_{x} \times \ell_{u}}$ such that

$$
x=E(k, u)=A k+B u
$$

with all operations in the binary field $(\mathbb{B}, \oplus, \odot)=(\{0,1\}, \mathrm{XOR}, \mathrm{AND})$ (if you do not know how to identify a linear system in a black box model, ©see Appendix 1)

Carry out linear cryptanalysis

Task 4

From a known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing

$$
k=A^{-1}(x+B u)
$$

(if you do not know how to compute A^{-1}, the binary inverse of A,
You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxxx_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's name. Find the value of the key k

"Nearly linear" Feistel cipher

Task 5

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

$$
\text { message length } \ell_{u}=\ell_{x}=2 \ell=32 \quad, \quad \text { key length } \ell_{k}=32 \quad, \quad n r . \text { of rounds } n=5
$$

round function with the notation from Task 1 , and $\vee=$ bitwise $\mathrm{OR}, \wedge=$ bitwise AND

$$
w_{i}(j)= \begin{cases}y_{i}(j) \oplus\left\{k_{i}(4 j-3) \wedge\left[y_{i}(2 j-1) \vee k_{i}(2 j-1) \vee k_{i}(2 j) \vee k_{i}(4 j-2)\right]\right\} & , 1 \leq j \leq \ell / 2 \\ y_{i}(j) \oplus\left\{k_{i}(4 j-2 \ell) \wedge\left[k_{i}(4 j-2 \ell-1) \vee k_{i}(2 j-1) \vee k_{i}(2 j) \vee y_{i}(2 j-\ell)\right]\right\} & , \ell / 2<j \leq \ell\end{cases}
$$

for $i=1, \ldots, n$
subkey generation is the same as in Task 1
Check that your implementation is correct by verifying that the encryption of $u=0 \times 12345678=[00010010001101000101011001111000]$ with the key
$k=0 \times 87654321=[10000111011001010100001100100001]$ is
$x=0 \times 2 \mathrm{E} 23 \mathrm{D} 53=[00101110100000100011110101010011]$

Linear cryptanalysis of a "nearly linear" cipher

Task 6

Find a linear approximation of the cipher in Task 5, that is, find matrices $A \in \mathbb{B}^{\ell_{x} \times \ell_{k}}$, $B \in \mathbb{B}^{\ell_{x} \times \ell_{u}}$ and $C \in \mathbb{B}^{\ell_{x} \times \ell_{x}}$ (it might possibly be $C=I$), such that

$$
\mathrm{P}[A k \oplus B u \oplus C x=0] \gg \frac{1}{2^{\ell_{x}}}
$$

and evaluate the above probability by numerical simulation.
From a few known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing

$$
k=A^{-1}(C x \oplus B u)
$$

and then explore "close" key values to find the key that encrypts u to x exactly.
You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxxx_nearly_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's name. Guess the value of the key k

Non linear Feistel cipher

Task 7

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

$$
\text { message length } \ell_{u}=\ell_{x}=2 \ell=16 \quad, \quad \text { key length } \ell_{k}=16 \quad, \quad \text { nr. of rounds } n=13
$$

round function with the notation from Tasks 1 and 5

$$
w_{i}(j)= \begin{cases}{\left[y_{i}(j) \wedge k_{i}(2 j-1)\right] \vee\left[y_{i}(2 j-1) \wedge k_{i}(2 j)\right] \vee k_{i}(4 j)} & , \quad 1 \leq j \leq \ell / 2 \\ {\left[y_{i}(j) \wedge k_{i}(2 j-1)\right] \vee\left[k_{i}(4 j-2 \ell-1) \wedge k_{i}(2 j)\right] \vee y_{i}(2 j-\ell)} & , \quad \ell / 2<j \leq \ell\end{cases}
$$

subkey generation is the same as in Tasks 1 and 5
Check that your implementation is correct by verifying that the encryption of $u=0 \times 0000=[0,0, \ldots, 0]$ with the key $k=0 \times 369 \mathrm{C}=[0011011010011100]$ is $x=0 \times 6$ A9B $=[0110101010011011]$

Meet in the middle attack

Task 8

Implement a "meet-in-the-middle" attack see Appendix 3 against the concatenation of two instances of the non linear Feistel cipher defined in Task 7, with different keys $k^{\prime}, k^{\prime \prime}$, respectively.

You will find a few plaintext/ciphertext pairs, all encrypted with the same concatenated cipher ,and the same pair of keys $k^{\prime}, k^{\prime \prime}$ in a file labeled KPApairsXxxxxx_non_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's name. Guess the values of the keys $k^{\prime}, k^{\prime \prime}$.

What you need to turn in

Each team must turn in, through the Moodle assignment submission procedure:

1. the code for your implementation (either as a single file, many separate files, or a compressed folder)
2. a short report (1-3 pages) in a graphics format (PDF, DJVU or PostScript are ok; Word, $T_{E} X$ or $L^{A} T_{E} X$ source are not), including:
2.1 a brief description of your implementations for Tasks 1-8, explaining your choices;
2.2 the results of your cryptanalysis effort:
2.2.1 the matrices A and B that you used in Task 3;
2.2.2 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 4
2.2.3 the matrices A, B and C that you used in Task 5, and an estimate value for the corresponding probability $\mathrm{P}[A k \oplus B u \oplus C x=0]$;
2.2.4 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 6
2.2.5 your guesses $\hat{k}^{\prime}, \hat{k}^{\prime \prime}$ for the keys we used to encrypt the KPA pairs in Task 8

Appendix 1: identifying a linear system

A general linear system, $y=A u$, with input u and output y can always be identified in a black box approach, by feeding it as inputs the vectors of the standard orthonormal basis

$$
e_{1}=[100 \ldots 0] \quad, \quad e_{2}=[010 \ldots 0] \quad, \quad \ldots \quad, \quad e_{\ell}=[000 \ldots 01]
$$

and observing the corresponding outputs.
In fact, by choosing a sequence of inputs u_{1}, \ldots, u_{ℓ} such that $u_{j}=e_{j}$, and observing the corresponding outputs y_{j} we obtain that $y_{j}=A e_{j}$ is the j-th column of matrix A.
In our case there are two inputs, the plaintext and the key. By encrypting $\left(e_{1}, \ldots, e_{\ell}\right)$ and the all-zero vector 0 you can obtain each column a_{j} of the matrix A and each column b_{j} of matrix B, as

$$
\begin{gathered}
k=e_{j}, u=0 \quad \Rightarrow \quad x=E\left(e_{j}, 0\right)=A e_{j}+B 0=a_{j}, \quad j=1, \ldots, \ell_{k} \\
k=0, u=e_{j} \quad \Rightarrow \quad x=E\left(0, e_{j}\right)=A 0+B e_{j}=b_{j}, \quad j=1, \ldots, \ell_{u}
\end{gathered}
$$

Appendix 2: computing the inverse of a binary matrix
The inverse of a square matrix A in the binary field \mathbb{B} is the matrix A^{-1} is given by

$$
A^{-1}=A^{*} \cdot \operatorname{det}(A) \bmod 2
$$

where A^{*} and $\operatorname{det}(A)$ are the inverse and the determinant of A in the real field \mathbb{R}, so $A^{*} \cdot \operatorname{det}(A)$ is an integer matrix. In fact

$$
A \odot A^{-1}=\left(A \cdot A^{*} \cdot \operatorname{det}(A)\right) \bmod 2=(I \cdot \operatorname{det}(A)) \bmod 2=I
$$

where \odot and \cdot denote the product between binary and between real matrices, respectively

Example

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right], \quad A^{*} \cdot \operatorname{det}(A)=\left[\begin{array}{ccccc}
0 & 3 & 0 & 0 & -3 \\
-1 & -3 & 1 & 2 & 2 \\
-1 & 0 & 1 & -1 & 2 \\
2 & 0 & 1 & -1 & -1 \\
1 & 0 & -1 & 1 & 1
\end{array}\right] \quad, \quad A^{-1}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Appendix 3: "meet in the middle" attack

This is a KPA against a concatenated cipher (see slides), where $x=E_{k^{\prime \prime}}^{\prime \prime}\left(E_{k^{\prime}}^{\prime}(u)\right)$ It consists in trying N^{\prime} distinct guesses for $k^{\prime} \in \mathcal{K}^{\prime}$, and $N^{\prime \prime}$ distinct guesses for $k^{\prime \prime} \in \mathcal{K}^{\prime \prime}$, with a complexity significantly lower than the product $N^{\prime} N^{\prime \prime}$. Given a known plaintext/ciphertext pair (u, x)

1. Generate $N^{\prime} \leq\left|\mathcal{K}^{\prime}\right|$ random guesses of $k^{\prime}, \hat{k}_{1}^{\prime}, \ldots \hat{k}_{N^{\prime}}^{\prime}$
2. For each guess \hat{k}_{i}^{\prime} compute the corresponding cipher guess $\hat{x}_{i}^{\prime}=E_{\hat{k}_{i}^{\prime}}^{\prime}(u)$
3. Sort the table with key and cipher guesses, according to \hat{x}_{i}^{\prime}
4. Generate $N^{\prime \prime} \leq\left|\mathcal{K}^{\prime \prime}\right|$ random guesses of $k^{\prime \prime}, \hat{k}_{1}^{\prime \prime}, \ldots \hat{k}_{N^{\prime \prime}}^{\prime \prime}$
5. For each guess $\hat{k}_{i}^{\prime \prime}$ compute the corresponding plaintext guess $\hat{u}_{i}^{\prime \prime}=D_{\hat{k}_{i}^{\prime \prime}}^{\prime \prime}(x)$
6. Sort the table with key and cipher guesses, according to $\hat{u}_{i}^{\prime \prime}$
7. Search for a match between the two sorted tables, that is a pair of guesses $\left(\hat{k}_{i}^{\prime}, \hat{k}_{j}^{\prime \prime}\right)$ such that $x_{i}^{\prime}=u_{j}^{\prime}$. Then, $\hat{k}^{\prime}=\hat{k}_{i}^{\prime}$ and $\hat{k}^{\prime \prime}=\hat{k}_{j}^{\prime \prime}$ will be your final guess
If you get several matches you can increase the attack success probability with more KPA pairs
