Laboratory session 1

Implementation and linear cryptanalysis of a Feistel cipher

Nicola Laurenti, Francesco Ardizzon October 30, 2020

© creative ① ③

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Laboratory session 1— Contents

Review of Feistel ciphers

Your tasks in this laboratory session

Appendices

Feistel ciphers

A Feistel cipher is a binary block cipher with $\mathcal{M} = \mathcal{X} = \mathbb{B}^{2\ell}$ that is based on the following *n*-round (S, T, L) iterated structure $E_k = LS_{k_n} \cdots TLS_{k_2}TLS_{k_1}$

- 1. First the plaintext u is split into two $\ell\text{-bit}$ blocks y_1 and z_1
- 2. Then at each round i the following transformation are applied

 $\begin{array}{ll} \text{substitution} \ S \ : \ \mathcal{K}' \times \mathbb{B}^{2\ell} \mapsto \mathbb{B}^{3\ell} \ , \ \ S_{k_i}(y_i,z_i) = [y_i,w_i,z_i] \ , \ \ w_i = f(k_i,y_i) \\ \text{linear tf} \qquad L \ : \ \mathbb{B}^{3\ell} \mapsto \mathbb{B}^{2\ell} \ , \ \ L(y_i,w_i,z_i) = [y_i,v_i] \ , \ \ \text{with} \ v_i = w_i + z_i \\ \text{transposition} T \ : \ \mathbb{B}^{2\ell} \mapsto \mathbb{B}^{2\ell} \ , \ \ T(y_i,v_i) = [v_i,y_i] = [y_{i+1},z_{i+1}] \ , \ \ i \neq n \\ \end{array}$

3. Last, y_n and v_n are concatenated to make the ciphertext x

N. Laurenti, F. Ardizzon 🖾 👀

Feistel ciphers

A Feistel cipher can be decrypted by using the same operations and in the same order, except for the inversion of the key sequence, i.e.: $D_k = LS_{k_1}TLS_{k_2}\cdots TLS_{k_n}$

- 1. Split x into y_n and v_n
- 2. Then at each round i running backwards (from n to 1)

$$\begin{array}{l} S_{k_i}(y_i,v_i) = [y_i,w_i,v_i] \;, & \text{with} \; w_i = f(k_i,y_i) \\ L(y_i,w_i,v_i) = [y_i,z_i] \;, & \text{with} \; z_i = w_i + v_i \\ T(y_i,z_i) = [z_i,y_i] = [y_{i-1},v_{i-1}] \;, \; \; i \neq 1 \end{array}$$

3. Last, y_1 and z_1 are concatenated to make the plaintext u

N. Laurenti, F. Ardizzon 🖾 👀

Example: Data Encryption Standard (DES)

- A Feistel cipher with binary keys and lengths $\ell_k = 56$, $\ell_u = \ell_x = 64$, $\ell = 32$, using n = 16 rounds
- Designed by IBM in 1977 for the US NSA
- Efficient hardware implementation

Security features

- Moderately secure against brute force (key too short even then)
- Careful design of the round function $f(\cdot, \cdot)$ avoiding linear and differential cryptanalysis (only discovered in the 90's)

Implement a simple Feistel encryptor

Task 1

Using a programming language of your choice, implement the encryptor for a Feistel cipher with the following parameters:

message length $\ell_u = \ell_x = 2\ell = 32$, key length $\ell_k = 32$, nr. of rounds n = 17

round function the *j*-th bit of the output block w_i in the *i*-th round, denoted $w_i(j)$ is $f: w_i(j) = \begin{cases} y_i(j) \oplus k_i(4j-3) &, \ 1 \le j \le \ell/2 \\ y_i(j) \oplus k_i(4j-2\ell) &, \ \ell/2 < j \le \ell \end{cases}$

subkey generation the j-th bit of the subkey k_i for the i-th round, denoted $k_i(j)$ is $g_i: k_i(j)=k(((5i+j-1) \bmod \ell_k)+1) \quad, \quad i=1,\ldots,n$

Check that your implementation is correct by verifying that the encryption of $u = 0x80000000 = [1, 0, \dots, 0]$ with the key $k = 0x80000000 = [1, 0, \dots, 0]$ is $x = 0xD80B1A63 = [1101\ 1000\ 0000\ 1011\ 0001\ 1010\ 0011]$

N. Laurenti, F. Ardizzon

Your tasks in this laboratory session

Task 2

Implement the decryptor for this Feistel cipher

Check that your implementation is correct by verifying that by concatenating encryption and decryption with the same key k you retrieve the original plaintext u. Experiment with different (u, k) pairs

Identify the cipher vulnerability

Observe that

- \blacktriangleright the round function $f(\cdot,\cdot)$ is linear in both the message block and the subkey
- \blacktriangleright the subkey generation function $g_i(\cdot)$ is linear in the key

and conclude that the cipher is linear

Task 3

Identify the overall linear relationship for this Feistel cipher, that is find the binary matrices $A \in \mathbb{B}^{\ell_x \times \ell_k}$ and $B \in \mathbb{B}^{\ell_x \times \ell_u}$ such that

$$x = E(k, u) = Ak + Bu$$

with all operations in the binary field $(\mathbb{B}, \oplus, \odot) = (\{0, 1\}, \text{XOR}, \text{AND})$ (if you do not know how to identify a linear system in a black box model, \frown see Appendix 1)

Carry out linear cryptanalysis

Task 4

From a known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing $t = t^{-1}(x + Bx)$

$$k = A^{-1}(x + Bu)$$

You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxx_linear.txt in the folder KPAdataXxxxx, where Xxxxxx is your team's name. Find the value of the key k

"Nearly linear" Feistel cipher

Task 5

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

message length $\ell_u = \ell_x = 2\ell = 32$, key length $\ell_k = 32$, nr. of rounds n=5

round function with the notation from Task 1, and $\lor =$ bitwise OR, $\land =$ bitwise AND

$$w_{i}(j) = \begin{cases} y_{i}(j) \oplus \{k_{i}(4j-3) \land [y_{i}(2j-1) \lor k_{i}(2j-1) \lor k_{i}(2j) \lor k_{i}(4j-2)]\} &, 1 \le j \le \ell/2 \\ y_{i}(j) \oplus \{k_{i}(4j-2\ell) \land [k_{i}(4j-2\ell-1) \lor k_{i}(2j-1) \lor k_{i}(2j) \lor y_{i}(2j-\ell)]\} &, \ell/2 < j \le \ell \end{cases}$$

for $i = 1, \ldots, n$
subkey generation is the same as in Task 1

Check that your implementation is correct by verifying that the encryption of $u = 0x12345678 = [0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000]$ with the key $k = 0x87654321 = [1000\ 0111\ 0110\ 0101\ 0100\ 0011\ 0010\ 0001]$ is $x = 0x2E823D53 = [0010\ 1110\ 1000\ 0010\ 0011\ 1101\ 0101\ 0011]$ N. Laurenti, F. Ardizzon Implementation and linear cryptanalysis of a Feistel cipher

October 30, 2020 10 / 17

Your tasks in this laboratory session

Linear cryptanalysis of a "nearly linear" cipher

Task 6

Find a linear approximation of the cipher in Task 5, that is, find matrices $A \in \mathbb{B}^{\ell_x \times \ell_k}$, $B \in \mathbb{B}^{\ell_x \times \ell_u}$ and $C \in \mathbb{B}^{\ell_x \times \ell_x}$ (it might possibly be C = I), such that

$$\mathbf{P}\left[Ak \oplus Bu \oplus Cx = 0\right] \gg \frac{1}{2^{\ell_x}}$$

and evaluate the above probability by numerical simulation.

From a few known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing

$$k = A^{-1}(Cx \oplus Bu)$$

and then explore "close" key values to find the key that encrypts u to x exactly.

You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxx_nearly_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's name. Guess the value of the key k

N. Laurenti, F. Ardizzon

Non linear Feistel cipher

Task 7

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

message length $\ell_u = \ell_x = 2\ell = 16 ~~,~~$ key length $\ell_k = 16 ~~,~~$ nr. of rounds n=13

round function with the notation from Tasks 1 and 5

$$w_{i}(j) = \begin{cases} [y_{i}(j) \land k_{i}(2j-1)] \lor [y_{i}(2j-1) \land k_{i}(2j)] \lor k_{i}(4j) &, 1 \le j \le \ell/2 \\ [y_{i}(j) \land k_{i}(2j-1)] \lor [k_{i}(4j-2\ell-1) \land k_{i}(2j)] \lor y_{i}(2j-\ell) &, \ell/2 < j \le \ell \end{cases}$$

subkey generation is the same as in Tasks 1 and 5

Check that your implementation is correct by verifying that the encryption of $u = 0x0000 = [0, 0, \dots, 0]$ with the key $k = 0x369C = [0011\ 0110\ 1001\ 1100]$ is $x = 0x6A9B = [0110\ 1010\ 1001\ 1011]$

Meet in the middle attack

Task 8

Implement a "meet-in-the-middle" attack \bigcirc see Appendix 3 against the concatenation of two instances of the non linear Feistel cipher defined in Task 7, with different keys k', k'', respectively.

You will find a few plaintext/ciphertext pairs, all encrypted with the same concatenated cipher ,and the same pair of keys k', k'' in a file labeled KPApairsXxxxx_non_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's name. Guess the values of the keys k', k''.

What you need to turn in

Each team must turn in, through the Moodle assignment submission procedure:

- 1. the code for your implementation (either as a single file, many separate files, or a compressed folder)
- 2. a short report (1-3 pages) in a graphics format (PDF, DJVU or PostScript are ok; Word, T_EX or $\[Mathbb{A}T_EX$ source are not), including:
 - 2.1 a brief description of your implementations for Tasks 1-8, explaining your choices;2.2 the results of your cryptanalysis effort:
 - 2.2.1 the matrices A and B that you used in Task 3;
 - 2.2.2 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 4
 - 2.2.3 the matrices A, B and C that you used in Task 5, and an estimate value for the corresponding probability $P[Ak \oplus Bu \oplus Cx = 0]$;
 - 2.2.4 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 6
 - 2.2.5 your guesses \hat{k}',\hat{k}'' for the keys we used to encrypt the KPA pairs in Task 8

Appendix 1: identifying a linear system

A general linear system, y = Au, with input u and output y can always be identified in a black box approach, by feeding it as inputs the vectors of the standard orthonormal basis

 $e_1 = [100...0]$, $e_2 = [010...0]$, \cdots , $e_\ell = [000...01]$

and observing the corresponding outputs.

In fact, by choosing a sequence of inputs u_1, \ldots, u_ℓ such that $u_j = e_j$, and observing the corresponding outputs y_j we obtain that $y_j = Ae_j$ is the *j*-th column of matrix A.

In our case there are two inputs, the plaintext and the key. By encrypting (e_1, \ldots, e_ℓ) and the all-zero vector 0 you can obtain each column a_j of the matrix A and each column b_j of matrix B, as

$$\begin{aligned} k &= e_j, u = 0 \quad \Rightarrow \quad x = E(e_j, 0) = Ae_j + B0 = a_j \quad , \quad j = 1, \dots, \ell_k \\ k &= 0, u = e_j \quad \Rightarrow \quad x = E(0, e_j) = A0 + Be_j = b_j \quad , \quad j = 1, \dots, \ell_u \end{aligned}$$

Appendices

Appendix 2: computing the inverse of a binary matrix

The inverse of a square matrix A in the binary field $\mathbb B$ is the matrix A^{-1} is given by $A^{-1}=A^*\cdot\det(A)\bmod 2$

where A^* and $\det(A)$ are the inverse and the determinant of A in the real field \mathbb{R} , so $A^* \cdot \det(A)$ is an integer matrix. In fact

$$A \odot A^{-1} = (A \cdot A^* \cdot \det(A)) \mod 2 = (I \cdot \det(A)) \mod 2 = I$$

where \odot and \cdot denote the product between binary and between real matrices, respectively

Example

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \quad , \quad A^* \cdot \det(A) = \begin{bmatrix} 0 & 3 & 0 & 0 & -3 \\ -1 & -3 & 1 & 2 & 2 \\ -1 & 0 & 1 & -1 & 2 \\ 2 & 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix} \quad , \quad A^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Appendix 3: "meet in the middle" attack

This is a KPA against a concatenated cipher (see slides), where $x = E_{k''}'(E_{k'}'(u))$ It consists in trying N' distinct guesses for $k' \in \mathcal{K}'$, and N'' distinct guesses for $k'' \in \mathcal{K}''$, with a complexity significantly lower than the product N'N''. Given a known plaintext/ciphertext pair (u, x)

- 1. Generate $N' \leq |\mathcal{K}'|$ random guesses of $k',\, \hat{k}_1', \dots \hat{k}_{N'}'$
- 2. For each guess \hat{k}'_i compute the corresponding cipher guess $\hat{x}'_i = E'_{\hat{k}'_i}(u)$
- 3. Sort the table with key and cipher guesses, according to \hat{x}_i'
- 4. Generate $N'' \leq |\mathcal{K}''|$ random guesses of k'' , $\hat{k}''_1, \dots \hat{k}''_{N''}$
- 5. For each guess \hat{k}''_i compute the corresponding plaintext guess $\hat{u}''_i = D''_{\hat{k}''_i}(x)$
- 6. Sort the table with key and cipher guesses, according to \hat{u}_i''
- 7. Search for a match between the two sorted tables, that is a pair of guesses $(\hat{k}'_i, \hat{k}''_j)$ such that $x'_i = u'_j$. Then, $\hat{k}' = \hat{k}'_i$ and $\hat{k}'' = \hat{k}''_j$ will be your final guess

If you get several matches you can increase the attack success probability with more KPA pairs