Information Security class
Laboratory session 3

instructors: Nicola Laurenti, Francesco Ardizzon

Fall semester 2020-21

Naive entity authentication scheme

Your aim is to implement and evaluate the weakness of the following naive challenge-response scheme for entity
authentication

entities the prover A, the verifier B

setup A and B have shared a secret key k of £ bits, randomly and uniformly generated

A—B: u; =ida

B : generates a random and uniform challenge c of /. bits

B : updates an integer counter n

B—oA: us=(c,n)

A : converts ¢ to its decimal (base 10) representation and computes the sum of its decimal digits, call the
sum Sg;

”

A : reads k as an integer (base 2) and computes ¢t = k + n; (“+” is the usual sum between integers)

A : converts ¢ to its decimal (base 10) representation and computes the sum of its decimal digits, call the
sum s¢;

A : computes the product s = s.sy;
A : convert s to its binary representation, let the resul be the response r;

A—-B: ug=r

B : performs the same computations and obtains the expected response 7

B : if the result are identical r = 7 A is accepted, otherwise A is rejected

Your tasks

1. Implement the protocol in a programming language of your choice so that its complexity is polynomial in
£, and /.

2. Design and implement an attack to the above protocol such that, without knowing the key k, and having
observed a previous legitimate round of the protocol where the counter had the value n’ = n — 25, a
malicious entity C pretends to be A and attempts to be accepted by B. Evaluate through simulations the
computational complexity and success probability for this attack with several values of ¢, and /.

3. Design and implement an attack such that, without knowing the key k nor observing any previous run of
the protocol, a malicious entity C pretends to be A and attempts to be accepted by B. Evaluate through
simulations its computational complexity and success probability by simulation with several values of £,
and /.



What you need to turn in

Each team must turn in, through the Moodle assignment submission procedure:

1. the source code for your implementation (either as a single file, many separate files, or a compressed

folder)

2. a short report (to be submitted as a separate file from the source code file / compressed folder) in a
graphics format (PDF, DJVU or PostScript are ok; Word, TEX or ITEX source are not), including:

(a) a brief description of your designs and implementations for Tasks 1-3, explaining your choices;

(b) the evaluated efficiency and security metrics for your system:

i

ii.

iii.

iv.

a plot of the computational complexity of a legitimate protocol run vs ¢, for several different
values of £,

a plot of the computational complexity for the attack devised in point 2 above, vs ¢, for several
different values of /.

a plot of the success probability for the attack devised in point 2 above, vs £y, for several different
values of £,

a plot of the computational complexity for the attack devised in point 3 above, vs £, for several
different values of /.

a plot of the success probability for the attack devised in point 3 above, vs ¢y, for several different
values of 7,



